If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.05x^2+2x=3600
We move all terms to the left:
0.05x^2+2x-(3600)=0
a = 0.05; b = 2; c = -3600;
Δ = b2-4ac
Δ = 22-4·0.05·(-3600)
Δ = 724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{724}=\sqrt{4*181}=\sqrt{4}*\sqrt{181}=2\sqrt{181}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{181}}{2*0.05}=\frac{-2-2\sqrt{181}}{0.1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{181}}{2*0.05}=\frac{-2+2\sqrt{181}}{0.1} $
| Y=-5x+13;(6,12) | | −4x−1=-8x-1−8x−1 | | -2(-9x+1)-6x=6(x+1)-6 | | 10x+7=5x+125x+12 | | 5x^2=30x+ | | 0=4t^2-4t-1 | | 6x+6=60° | | −(5m+11)=3(m−41) | | -2=5v+4(v-5) | | 30•x=1000 | | 5,4=9•x | | 132=186-w | | x=0.58 | | 21.99=4g+3.71 | | 7w(2+w)=2(3w-1) | | 4a-3a+11=6a-4 | | +6-x=21 | | G(t)=-3t+4 | | 0,1x3-0,3x2=300 | | 44=9.8t2 | | 13x+13=139° | | 24+5w=13w | | 2x+7+x+17=9x. | | –6x–20=–2x+4(1–3x) | | 44.65=9g+3.52 | | 135=(7x+2) | | 3(x+2)−2(x+1)= | | 8n²+5n-636=0 | | √2(5x-1)=√2x+14 | | 4(2a+3)=21 | | 142=(3x+22) | | X+8=3x-46 |